Wednesday, November 1, 2023

Food borne infections - Bacterial: Staphylococcal, Escherichia, Salmonella

 Salmonellosis

Salmonellosis is the most frequently occurring bacterial food-borne illness.

Salmonellae are gram-negative non-spore-forming rods that ferment glucose, usually with gas, but usually do not ferment lactose or sucrose. They grow over a wider range of temperature, pH, and water activity. They grow well at room temperatures, optimum is about 37oC. The pH range for growth is 4.1 to 9.0. The lowest aw for growth varies with the food but is about 0.93 to 0.95.

The likelihood of infection by consumption of a food containing salmonellae depends on the resistance of the consumer, the infectiveness of the particular strain of Salmonella. and the number of organisms ingested. Salmonellae can attain considerable numbers in foods without causing detectable alterations in appearance, odor, or even taste. Human beings and animals are directly or indirectly the source of the contamination of foods with salmonellae. The organisms may come from cases of the disease or from carriers.

Most frequently isolated serovars, such as S. typhimurium cause human gastroenteritis.

A large variety of foods are involved in causing outbreaks of Salmonella infections. Most common are various kinds of meats, poultry and products from them, especially if they are held unrefrigerated for long periods. Fresh meats may carry Salmonella bacteria that caused disease in the slaughtered animals or may be contaminated by handlers. Meat products, such as meat pies, hash, sausages, cured meats (ham, bacon, and tongue), sandwiches, and chili, often are allowed to stand at room temperatures, permitting the growth of salmonellae. Milk and milk products, including fresh milk, fermented milks, ice cream, and cheese, have caused infections. Since eggs may carry the salmonellae, foods made with eggs and not sufficiently cooked or pasteurized may carry live organisms, e.g., pastries filled with cream or custard, cream cakes, etc.

The organisms also may come from cats, dogs, swine, and cattle, but more important sources for foods are poultry and their eggs and rodents. About one-third of all the food products involved in Salmonella outbreaks are meat and poultry products, eggs etc. Infected rodents, rats and mice, may contaminate unprotected foods with their faeces and thus spread Salmonella bacteria. Flies may play an important role in the spread of Salmonella, especially from contaminated fecal matter to foods.

Changes in processing, packaging, and compounding of foods and feeds in recent years have resulted in an apparent increase in salmonellosis from these products. Salmonellae have been introduced by the incorporation of cracked and dried eggs in baked goods, candy, ice cream, and convenience foods such as cake and cookie mixes.

Large-scale handling of foods, increase the spread of trouble, precooked foods and food vending machines add to the risk. Feeds, especially those from meat or fish by-products, may carry Salmonellae to poultry or meat animals.

As with other infectious diseases, individuals differ in their susceptibility to Salmonella infections, but in general morbidity is high in any outbreak. The susceptibility of humans varies with the species and strain of the organism and the total numbers of bacteria ingested

Salmonellosis has a longer incubation period - usually 12 to 36 hr. The principal symptoms of a Salmonella gastrointestinal infection are nausea, vomiting, abdominal pain, and diarrhea that usually appear suddenly. This may be preceded by a headache and chills. Other evidences of the disease are watery, greenish foul-smelling stools, prostration, muscular weakness, faintness, usually a moderate fever, restlessness, twitching, and drowsiness. The mortality is low, being less than 1 percent. The severity and duration vary not only with the amount of food eaten and hence the numbers of Salmonella bacteria ingested and with the individual.

Intensity may vary from slight discomfort and diarrhea to death in 2 to 6 days. Usually, the symptoms persist for 2 to 3 days, followed by uncomplicated recovery, but they may linger for weeks or months. About 0.2 to 5 percent of the patients may become carriers of the Salmonella organism.

The laboratory diagnosis of the disease is difficult unless Salmonella can be isolated from the suspected food and from the stools of individuals.

For the prevention of outbreaks of food-borne Salmonella infections:

(I) avoid contamination of the food with salmonellae from sources such as diseased human beings and animals and carriers and ingredients carrying the organisms, e.g., contaminated eggs

(2) destroy the organisms in foods by heat (or other means) when possible, as by cooking or pasteurization, paying special attention to held-over foods

(3) prevent the growth of Salmonella in foods by adequate refrigeration or by other means.

In the prevention of contamination, care and cleanliness in food handling and preparation are important. The food handlers should be healthy (and not be carriers) and clean. Rats and other vermin and insects should be kept away from the food. Ingredients used in foods should be free of salmonellae, if possible.

 Foods should not be allowed to stand at room temperature for any length of time, but if this happens, thorough cooking will destroy the Salmonella organisms unlike Staphylococcus enterotoxin.

Warmed-over leftovers, held without refrigeration, often support the growth of Salmonella, as may canned foods that have been contaminated and held after the cans were opened. Inspection of animals and meats at packing houses may remove some Salmonella-infected meats but is not in itself a successful method for the prevention of human salmonellosis.

Staphylococcus Food Intoxication

One of the most commonly occurring food poisonings is caused by the ingestion of the enterotoxin formed in food during growth of certain strains of Staphylococcus aureus. The toxin is termed an enterotoxin because it causes gastro- enteritis or inflammation of the lining of the intestinal tract.

Staphylococcus, typically appear as clusters of grapes or in pairs and short chains. Growth on solid media usually is golden or yellow but may be unpigmented in some strains. Most enterotoxin-producing S. aureus cultures are coagulase-positive (coagulating blood plasma), produce a thermal stable nuclease, and are facultative in their oxygen requirements in a complex glucose medium but grow better aerobically than anaerobically. Some of the toxigenic cocci are very salt-tolerant (10 to 20 percent NaCl), and also tolerate nitrites fairly well and therefore can grow in curing solutions and on curing and cured meats if other environmental conditions are favourable. They also are fairly tolerant of dissolved sugars (50 to 60 percent sucrose). They are fermentative and proteolytic but usually do not produce obnoxious odors in most foods or make them appear unattractive.

S. aureus produces six enterotoxins (A, B, Cl , C2 , D, and E) that differ in toxicity; most food poisoning is from type A. The range of conditions permitting growth of the staphylococcus, and hence toxin production, varies with the food involved. The better medium the food is for the coccus, the wider the range of temperature, pH, or aw over which growth can take place. The temperature range for growth and toxin production is about 4 to 46oC, depending on the food. S. aureus grows most rapidly between 20 and 45oC. A and D are more often associated with food-poisoning outbreaks. Toxin production and growth of the Staphylococcus is best at 40oC.

The sources from which the food-poisoning staphylococci enter foods are human or animal. The nasal passages of many persons are laden with these organisms, which are a common cause of sinus infections. Also, boils and infected wounds may be sources. Staphylococci are becoming increasingly important in causing mastitis in cows, and some of these cocci can form enterotoxin in milk or milk products.

Production of enterotoxin by the Staphylococci is more likely when competing microorganisms are absent, few, or inhibited for some reason. Therefore, a food that had been contaminated with the Staphylococci after a heat process would be favourable for toxin production. The type of food has an influence on the amount of enterotoxin produced; much is produced in meat products and custard-filled bakery goods. The presence of starch and protein in considerable amounts enhance toxin production by the staphylococci. Type B enterotoxin is the most heat-resistant. The normal cooking of foods will not destroy the toxin formed therein before the heat process. Such foods might cause poisoning, although no live staphylococci could be demonstrated.

About 75 percent of all staphylococcal food-poisoning outbreaks occur because of inadequate cooling of foods. Other foods incriminated include other meats and meat products, fish and fish products, milk and milk products, cream sauces, salads, puddings, custards, pies, and salad dressings. The fillings in bakery goods usually are good culture media in which the staphylococci can grow during the time that these foods are held at room temperatures. Toxin production has even been reported in imitation cream filling. The contaminated leftover turkey, or other fowl, along with the gravy and dressing, is kept out of the refrigerator, it may cause poisoning.

Foods that ordinarily are too acid for good growth of the staphylococci may have this acidity reduced by added ingredients, such as eggs or cream, and then become dangerous. Growth and toxin production by staphylococci may take place in the steam tables in cafeterias and restaurants and in food-vending machines that keep foods heated for extended periods if temperatures and times are not properly controlled.

Individuals differ in their susceptibility to staphylococcus poisoning, so that of a group of people eating food containing toxin some may become very ill and few may be affected little or not at all. The incubation period for this kind of poisoning usually is brief, 2 or 4 hr unlike the other common food poisonings and infections, which usually have longer incubation periods.

The most common human symptoms are nausea, vomiting, retching, abdominal cramping of varying severity, and diarrhea. Blood and mucus may be found in stools and vomitus in severe cases. Headache, muscular cramping, sweating, chills, prostration, weak pulse, shock, and shallow respiration may occur. Usually a subnormal body temperature is found rather than fever. The duration is brief, usually only a day or two, and recovery ordinarily is uneventful and complete. The mortality is extremely low.

For the most part no treatment is given, except in extreme cases, when saline solutions may be given parenterally to restore the salt balance and counteract dehydration. Diagnosis of the poisoning would depend, on isolation of staphylococci and demonstration that this produce enterotoxin or isolation and detection of the enterotoxin.

The means of prevention of outbreaks of staphylococcus food poisoning include

(1) prevention of contamination of the food with the staphylococci  (2) prevention of the growth of the staphylococci and (3) killing staphylococci in foods.

Contamination of foods can be reduced by general methods of sanitation, by using ingredients free from the cocci, e.g., pasteurized rather than raw milk, and by keeping employees away from foods when these workers have staphylococcal infections in the form of colds, boils, carbuncles, etc. Growth of the cocci can be prevented by adequate refrigeration of foods and, in some instances, by adjustment to a more acid pH. Also the addition of a bacteriostatic substance, such as serine or an antibiotic, has been suggested. Some foods may be pasteurized to kill the staphylococci before exposure of the foods to ordinary temperatures, e.g., pasteurization of custard filled puffs and eclairs for 30 min at 190.6 to 218.3 C oven temperature.

Enteropathogenic Escherichia Coli

E. coli is generally regarded as part of the normal flora of the human intestinal tract and that of many animals. Serotypes of E. coli have been implicated in human diarrheal diseases or foodpoisoning outbreaks are designated as enteropathogenic E. coli (EEC).

The human disease syndromes resulting from the ingestion of EEC have been divided into two main groups. The first group consists of strains which produce an enterotoxin and result in a choleralike or enterotoxigenic illness in humans. These enterotoxigenic strains usually produce two enterotoxins, a heat-stable (ST) and a heat-labile (LT) toxin, and are thought to be responsible for infantile diarrheal diseases and traveller’s diarrhea. EEC serotypes capable of elaborating the enterotoxins if ingested, are colonized in the upper small intestine and produce the enterotoxins. The enterotoxins cause fluid accumulation in the intestinal lumen.

The second major group consists of invasive strains which produce a cytotoxin and result in the invasive illness, colitis, or dysentery like syndrome. These serotypes are non-enterotoxigenic, grow in the colon, and invade or penetrate the epithelial cells of colonic mucosa, resulting in fever, chills, headache, abdominal cramps etc

A large infective dose of EEC is required for either the enterotoxigenic or invasive illness to occur. Therefore, foods must be highly contaminated or inadequately preserved or refrigerated to allow for prolific growth. The optimal temperature for growth is 37oC, with a temperature range for growth of 10 to 40oC. The optimal pH for growth is 7.0 to 7.5, with the minimum at pH 4.0 and the maximum at pH 8.5. The organism is relatively heat sensitive and can readily be destroyed at pasteurization temperatures and by the proper cooking of foods.

In addition, the hemorrhagic E. coli (EHEC) strains can result in illness in humans as manifested by bloody diarrhea and severe abdominal pain.

Thorough and sanitary methods of cooking, chilling foods after use, maintaining personal hygiene, treating water and ensuring sanitary disposal of sewage can control E. coli infections

Friday, October 27, 2023

Mycotoxins

 Fungal toxins

Mycotoxins are fungal metabolites which may contaminate foods, animal feeds, and are toxic to humans or their domestic animals. They are proposed to have carcinogenic properties. As common adulterants of foods or animal feeds, they are important food contaminants. Mycotoxicosis results from the ingestion of toxin in a mold-contaminated food.

            The fungi include the molds, yeasts, mildews, blights, rusts, and mushrooms. Many fungi are useful. Some are edible, e.g., mushrooms and single-cell protein from yeast. Others are widely used in industrial and food fermentations; e.g., Aspergillus oryzae is used in the production of soy sauce, miso, and sake, and molds take part in the ripening of certain cheese. The metabolite of Penicillium chrysogenum, penicillin, has contributed immensely to human well-being. Some mushrooms are harmful or poisonous to humans, but in contrast, molds have generally been regarded as harmless.

The two predominant genera of fungi in stored products are probably Penicillium and Aspergillus, members of which produce mycotoxins.

 Ergot

The first documented case of mycotoxicosis was that of rye ergotClaviceps purpurea parasitizes rye and other grains and produces many lysergic acid derivatives which are responsible for the syndrome. Consumption of the infested grain or flour made from it over a period of time can result in gangrenous ergotism.

Outbreaks of ergotism were quite common during the Middle Ages. More recent outbreaks of ergotism have been reported in the Soviet Union (1926-1927), England (1928), and France (1951).

Claviceps purpurea is a parasite of grasses including cereals. As part of its life cycle, the tissues of infected grains are replaced by sclerotium which is fungal mycelium. The sclerotium helps to survive the adverse conditions of the winter and germinate later. It is also known as an ergot.

Ergotism is the name for severe pathological syndromes affecting humans or other animals that have ingested plant material containing ergot alkaloid, such as ergot-contaminated grains. The common name for ergotism is "St. Anthony's fire", in reference to the severe burning sensations in the limbs.

Ergotismis due to ergot alkaloids which is toxic and cause a constriction of the peripheral blood capillaries leading, to fingers and toes becoming gangrenous and necrotic.Ergots contain alkaloid metabolites which may be incorporated into the flour, and the bread, made from the harvested grain. The ergot sclerotium contains high concentrations (up to 2% of dry mass) of the alkaloid ergotamine, and ergoline group. Ergot alkaloids have a wide range of biological activities including effects on circulation and neurotransmission. Ergot contains lysergic acid which is a precursor for the synthesis of LSD which is a potent synthetic hallucinogenic drug.

There are two types of ergotism. The first is characterized by muscle spasms, fever and hallucinations and the victims may appear dazed, be unable to speak, or have other forms of paralysis or tremors, and suffer from hallucinations. This is caused by stimulation of the central nervous system by some of the alkaloids. The second type of ergotism is marked by violent burning, and shooting pain of the poorly vascularized distal organs, such as the fingers and toes. It is caused by effects of ergot alkaloids on the vascular system due to vasoconstriction, sometimes leading to gangrene and loss of limbs due to severely restricted blood circulation.

Ergot metabolites also have profound effects on the central nervous system stimulating smooth muscle activity. The neurotropic activities of the ergot alkaloids may also cause hallucinations, convulsions, and even death. Other symptoms include strong uterine contractions, nausea, seizures, high fever, vomiting, loss of muscle strength and unconsciousness.

Ergot alkaloids has been used in pharmaceutical preparations, to treat migraine headaches, and to induce uterine contractions and control bleeding after childbirth.  Since the Middle Ages, controlled doses of ergot were used to induce abortions and to stop maternal bleeding after childbirth.

The causative agents of most ergot poisonings are the ergot alkaloid class of fungal metabolites. The fungi of the genera Penicillium and Aspergillus also produce ergot alkaloids, particularly some isolates of the human pathogen Aspergillus fumigatus.

Aflatoxin

Aflatoxicosis is a fungal toxicosis that may affect all species of animals. Aflatoxins are produced by certain strains of Aspergillus flavus and A. parasiticusThese fungi grow on carbohydrate-rich feeds such as peanuts, cottonseed, corn, sorghum and cereal grains when they are stored in hot conditions without adequate drying and aeration. Optimal conditions for the production of aflatoxin would be an aw of 0.85 and a temperature of 25 to 40oC.

The number and types of aflatoxins produced vary with the strain. For example, A. flavus strains produce B1 and its related metabolities, while A. parasiticus produces both B1 and G1 and the related metabolites.

In 1959 there was the deaths of several thousand turkey poults and other poultry on farms in East Anglia due to poisoning of the groundnut meal used as a protein supplement in the pelleted feed. The contaminant, which was called aflatoxin, fluoresces intensely under ultra-violet light and was shown to be produced by the mould Aspergillus flavus growing on the groundnuts.

Acute aflatoxicosis can be caused by ingestion of high doses of aflatoxin over a short period of time. Aflatoxin toxicity may result in nausea, vomiting, abdominal pain, convulsions, and other signs of acute liver injury. Long-term exposure also leads to various complications like growth retardation, cirrhosis, and hepatocellular carcinoma.

The two major aflatoxins have been designated B1 and G1 because they fluoresce blue (B1) and green (G1) when exposed to long-wave ultraviolet light. Aflatoxins B2 and G2 are the dihydroderivatives of B1 and G1. Aflatoxins M1, M2, and P1 are the hydroxylated derivatives of B1 and B2 which are excreted in the urine, faeces, and milk as metabolic products of B1 and B2 following their consumption by mammals.  

Aflatoxin B1, the most toxic of the aflatoxins, is toxic to various animals. Many of the other aflatoxins have been shown to be toxic or carcinogenic to different species of fish, mammals, and poultry. When cows eat feed containing aflatoxin, aflatoxin M1 and M2 is excreted in the milk. Although M1 and M2 are less toxic than the parent compounds B1 and B2, M1 retains its toxic and carcinogenic ability in many animals. M1 has also been detected in the urine of Philippine women who had consumed peanut butter containing aflatoxin.

Many commodities will support the growth of toxigenic strains, including various dairy products, bakery products, fruit juices, cereals, and forage crops.  Aflatoxins have been reported from a wide range of foods and animal feeds. Initially, it was considered that aflatoxin contamination was a problem of poor storage of commodities after harvest allowing the growth of storage fungi such as Aspergilli with consequent formation of mycotoxins. High humidity and warm temperatures can give rise to the highest levels of aflatoxin in food.

Aflatoxins can be produced in the growing crop before harvest also. Aflatoxigenic species of Aspergillus can establish an endophytic relationship with the healthy plant and produce low, but significant, amounts of aflatoxin when the plant is stressed, such as occurs during a drought.

It is assumed that a correlation is there between aflatoxin and liver cancer and liver damage in different parts of the world. Very young children may be exposed to aflatoxins even before they are weaned because mothers, consuming aflatoxin in their food, may secrete aflatoxin M1 in their milk.

.

Monday, July 17, 2023

Rhizosphere & rhizosphere microflora

 Rhizosphere is the region of intense microbial activity, extending several millimeters from the root system of vascular plants. It is where the soil and root of plant make contact. Rhizosphere soil is the thin layer of soil adhering to the root system after shaking and removing the loose soil.

In 1904 the German agronomist and plant physiologist Lorenz Hiltner first coined the term "rhizosphere” [Greek word "rhiza", meaning root]. 

Hiltner described the rhizosphere as; “The area around a plant root that is inhabited by a unique population of microorganisms, influenced by the chemicals released from plant roots”.



Rhizosphere microflora is quantitatively and qualitatively different from the non-rhizosphere microflora. Also, rhizosphere microflora of one plant differs from that of another. Thus, rhizosphere is a unique subterranean habitat for microorganisms.

Structure of Rhizosphere

It has three zones which are defined based on their relative proximity to, and thus influence from, the root.

1. Endorhizosphere; in close proximity with the plant cortex and endodermis in which microbes can occupy the "free space" between cells

2. Rhizoplane; is the root surface

3. Ectorhizosphere; the outermost zone which extends from the rhizoplane into the adjacent soil.


Rhizosphere effect

The direct influence of plant roots on microbes and microbes on plant root within the rhizosphere is known as Rhizosphere effect. The growth of a soil microorganism is enhanced by the excretions and organic debris of roots within a rhizosphere. These bring about physical and chemical alteration of the soil.

 Rhizosphere effect is expressed by R:S ratio, which is the ratio between number of microorganisms in the rhizosphere soil to the number of microorganisms in the non-rhizosphere soil. R: S ratio is different for different plants and changes with the stage of growth of a plant. The values are high for bacteria in rhizosphere region.

During seed germination and seedling growth, the developing plant interacts with microorganisms present in the surrounding soil. As seeds germinate and roots grow through the soil, the release of organic material lead to the development of active microbial populations in rhizosphere region (that includes plant root and surrounding soil in a few mm of thickness). 



Root exudation is the release of organic compounds from living plant roots into the surrounding soil. Rates of exudation vary widely among plant species and environmental conditions. It has been estimated that 12-40% of the total amount of carbohydrates produced by photosynthesis is released into the soil surrounding roots. 

Root exudates are mainly composed of water-soluble sugars, organic acids, and amino acids, but also contain hormones, vitamins, amino compounds, phenolics and sugar phosphate esters. The qualitative and quantitative compositions of root exudates are affected by various environmental factors including; pH, soil type, oxygen status, light intensity, soil temperature, nutrient availability and the presence of microorganisms. The rhizosphere, is a hot spot for numerous organisms and is considered as one of the most complex ecosystems on Earth. Microorganisms found in the soil include bacteria, fungi, nematodes, protozoa, algae, viruses etc.

Rhizosphere microflora

Rhizosphere organisms that have been well studied for their beneficial effects on plant growth and health are; the nitrogen-fixing bacteria, mycorrhizal fungi, plant growth-promoting rhizobacteria (PGPR), biocontrol microorganisms, myco parasitic fungi, and protozoa. Rhizosphere microorganisms that are deleterious to plant growth and health include the pathogenic fungi, bacteria, and nematodes. A third group of microorganisms that can be found in the rhizosphere are the human pathogens.

Plant-Microbe interactions in the rhizosphere

Microorganisms present in the rhizosphere play important roles in ecological fitness of their plant host.

Important microbial processes that are expected to occur in the rhizosphere include;

 pathogenesis

 plant protection/growth promotion

 production of antibiotics

 geochemical cycling of minerals

 plant colonization

Plant-microbe interactions may thus be considered beneficial, neutral, or harmful to the plant, depending on the specific microorganisms and plants involved and on the prevailing environmental conditions.

Pathogenic interactions

Roots exudates can attract beneficial organisms, but they can also be equally attractive to pathogenic populations. Many pathogenic organisms, bacteria as well as fungi, have coevolved with plants and show a high degree of host specificity. But even though plants are in permanent contact with potential pathogens such as fungi, bacteria or viruses, successful infection is rarely established. Such a general resistance against most pathogens has been named “horizontal resistance”. These resistance mechanisms include structural barriers and toxic compounds that are present in the unaffected, healthy plant. Phytoanticipins; is a toxin which resist the entry and colonization of pathogenic fungi in plants. In some instances, pathogens can overcome the pre-formed barriers and develop virulent infection processes leading to plant disease.

Beneficial microorganisms and modes of action

Plant-beneficial microbial interactions can be roughly divided into three categories. 

First, those microorganisms that, in association with plants, are responsible for its nutrition (i.e., microorganisms that can increase the supply of mineral nutrients to the plant). In this case, most organisms may not directly interact with the plant, but their effects on soil biotic and abiotic parameters  have an impact on plant growth. e.g. Microbes involved in biogeochemical cycles. 

Second, there is a group of microorganisms that stimulate plant growth indirectly by preventing the growth or activity of pathogens. Such microorganisms are referred to as biocontrol agents, and they have been well documented.

 A third group involves those microorganisms responsible for direct growth promotion. For example, by production of phytohormones.

1. Plant growth promoting Rhizobacteria- PGPR  improve plant growth.  PGPR strains have been used successfully for crop inoculations such as Bacillus, Pseudomonas, Rhizobium etc. PGPR  promotes plant growth, development and protection by 

  1. Biofertilization -directly, by helping to provide nutrient to the host plant, or helps in root growth and morphology or other beneficial symbiotic relationships- Rhizobium, Azospirillum etc, 
  2. Phyto stimulation (plant growth promoting, usually by the production of phytohormones [auxins, cytokinins, and gibberellins) 
  3. Biocontrol (controlling diseases, mainly by the production of antibiotics and antifungal metabolites, lytic enzymes etc). Eg., Bacillus thuringiensis (BT)
  • Pathogen inhibition can also  be by
  • Antagonism, including; Antibiosis i.e. the inhibition of microbial growth by diffusible antibiotics, toxins, and biosurfactants,  
  • Competition  for resources such as nutrients and oxygen occur generally in soil between soil-inhabiting organisms. 
  • Induced resistance -Plant-associated bacteria can reduce the activity of pathogenic microorganisms by helping the plant to better defend itself, a phenomenon termed “induced systemic resistance”, “ISR”.

Neutral interactions

Saprophytic microorganisms are responsible for decomposition of organic residues in soil and associated soil nutrient mineralization or turnover processes. Whereas these organisms do not appear to benefit or harm the plant directly (hence the term neutral), their presence is vital for soil dynamics, and their absence would influence plant health and productivity.

Sunday, February 19, 2023

Salting Out


Aim

To precipitate out dissolved egg white protein by salting out

Principle

Salts such as ammonium sulphate and sodium sulphate ae used for the recovery and fractionation of proteins. As the salt concentration of a solution increases, more of the bulk water become associated with salt ions. The salts remove water from the surface of the protein revealing hydrophobic patches which come together causing the proteins to precipitate. Proteins which exhibit hydrophobic interactions aggregate and precipitate from the solution. This is a vital step in downstream processing of proteins. Precipitation relies on the principle that when compounds of higher affinity are added to the protein solution in a solvent, the protein get separated as a precipitate.

 Materials Required

Egg white solution, 10% ammonium sulphate solution, glass rod, routine microbiological facilities

Procedure

1. 10% ammonium sulphate solution was gently added to the solution of egg white with constant stirring, till precipitation was maximum.

2. The mixture was filtered and washed with ammonium sulphate solution in a funnel over filter paper

Result

The egg white protein was precipitated

 


Isolation of microbial flora of fermented milk


Aim

To isolate and enumerate bacteria of fermented milk.

Principle

Fermentation with certain microorganisms is necessary in the preparation of foods such as cheese, curd, yoghurt etc. Milk is fermented with lactic acid bacteria to make curd. Thus, the presence of microorganisms in food though considered harmful in some cases, it is definitely beneficial in other cases.

Materials Required

Curd, sterile tubes, nutrient agar, petri plates, Bunsen burner, pipettes, L-rod.

Procedure

1. Sterile nutrient agar plates containing 20 ml of medium were prepared.

2. Curd sample was diluted by serial dilution technique to obtain dilutions of 10-4, 10-5, 10-6, 10-7.

3. The plates were labelled corresponding to the dilutions.

4. Using sterile pipettes 0.1 ml from each dilution was placed in respective nutrient agar plates.

5. The L-shaped glass rod was sterilized with alcohol followed by flaming. The rod was cooled and gently placed on the surface of agar.

7. Petri plate was rotated in both clockwise and anticlockwise direction to uniformly spread the sample over agar surface. The plates were incubated in inverted position for 24 - 48 hours at 370 C.

8. The number of colonies were counted and the total microorganisms per ml of original sample was calculated.

Observation

Each of the dilution plates were observed for colonies of bacteria. The number of colonies were counted.

Result

The number of organisms per ml was found to be  2.6 x 107

 

Observation (on left side)

 Enumeration of Bacteria from Curd


Organism

Dilution

Number of Colonies

Number of Organisms per ml

 

 

BACTERIA

 

 10-5

 

 

26

 

26 x 105    = 2.6 x 107

0.1

 10-6

4

 4 x 106    = 4 x 107

0.1

 

The number of organisms per ml of curd can be calculated by applying the formula,

Number of organisms per ml of curd = Number of colonies ×dilution factor

                                                                           Amount plated

 

Saturday, February 18, 2023

Pellicle formation

 Aim

To demonstrate pellicle formation in a broth culture 

Principle

Homogenous suspended microbial growth in a liquid medium will aid in availability of oxygen and other nutrients. This is ensured by using a rotary shaker or impeller driven bioreactor that keeps the cell, product, substrate and oxygen well mixed. When agitation stops, the culture remains static and the dissolved oxygen in the culture broth gets quickly used up, restricting growth and encouraging anaerobic physiology. At the surface of the broth, due to oxygen availability from the above gaseous phase, cells continue to multiply forming a well textured physical mat known as pellicle at the liquid surface. This further cuts off any oxygen diffusing from the top, pushing the lower part to further anaerobiosis.

Pellicle formation can result in low yields in a bioprocess industry due to unintended channelling of the substrate and efforts since unwanted by-products will be formed and will complicate the downstream processing.

 Materials Required

1. Culture: Aspergillus niger

2. Media: Doelger Prescott broth

3. Routine microbiological facilities

 Procedure

1. Aspergillus niger was inoculated in 300 ml of Doelger Prescott media.

2. It was incubated for 6 hours in a rotary shaker and then at room temperature undisturbed for about 7 days.

3. After incubation, the culture broth was observed for pellicle formation.

Observation and Result

A thick mat of microbial growth was observed on the surface of the liquid media.

Production and estimation of Citric acid

Aim

To demonstrate and estimate citric acid production by Aspergillus niger

 

Principle

Citric acid is the key intermediate of tricarboxylic acid cycle. Citric acid is used as acidulant in food and pharmaceutical industry for the production of carbonated beverages and used as plasticizer. Commercially, citric acid is produced by surface fermentation using Aspergillus niger. Beet molasses medium containing 10-20% sucrose is used in the commercial production. Doelger Prescott medium is used in this experiment to produce citric acid using Aspergillus niger. 

Estimation of citric acid is done by titration against standard NaOH using phenolphtahelin indicator. The amount of citric acid produced is expressed in gram per 100ml.

 Materials Required

1. Culture: Aspergillus niger

2. Media: Doelger Prescott broth

3. Routine microbiological facilities, Burette, pipette, conical flask, measuring cylinder

4. Reagents: 0.1 N NaOH, Phenolphthalein

 Procedure

1. 300 ml of Doelger Prescott media was prepared. pH was adjusted to 4.0 using 0.1 N HCL.

2. The medium was autoclaved and inoculated with a loopful of Aspergillus niger culture.

3. The flask was incubated at room temperature for 7 days.

4. After incubation for 7 days, the pH of the medium was noted.

5. The amount of citric acid in the culture broth was estimated by titration.

Estimation of Citric acid by titration

1. 1 ml of phenolphthalein indicator was added to 200 ml hot boiled water in a 250 ml flask.

2. 1 ml of culture filtrate was added to the above flask and titrated against 0.1  NaOH to the endpoint, in a well illuminated white background.

3. The initial and final readings were noted to calculate the volume of standard NaOH

 Result

The pH of the media was 4 before inoculation of Aspergillus niger culture and it decreased to 2 after 7 day incubation. This is due to the production of citric acid by the fungal cylture.

The amount of citric acid was estimated to be 0.30 g/100ml

  

Observation (left side)

1 N NaOH stock solution was prepared by dissolving 40 g NaOH in distilled water. From this stock solution, 0.1 N NaOH was prepared by mixing 50 ml stock solution with 450 ml distilled water.

Citric acid estimation

Conical flask: 200 ml hot boiled water + 1 ml of phenolphthalein + 1 ml of culture filtrate

Burette: 0.1 N NaOH

Endpoint: Appearance of distinct pale pink colour

 

1

2

3

Initial burette reading

 

 50

 48

 46

Final burette reading

 

 49.5

 47.6

 45.5

Volume of 0.1 N NaOH rundown (ml)

 0.5

 0.4

 0.5

 

Calculation (left hand side)

Citric acid (g/100ml) =

Volume of 0.1N NaOH × Normality × Equivalent molecular weight of citric acid ×100

Volume of sample taken

0.47 × 0.1 × 0.064 × 100/1

Citric acid (g/100ml) =         0.30 g/100 ml

 


Effect of aeration on growth of bacteria

  Aim To study the effect of aeration on growth of bacteria Principle Microorganisms are classified into categories such as aerobic, f...